Academic Session 2025-26

Class: M.Sc. Maths (1st sem)

Paper: Discrete Mathematics Name: Dr. Sushma

Weeks	Month
	August 2025
Week 1	Recurrence Relations and Generating Functions,
Week 2	Some number sequences, Linear homogeneous recurrence relations, Nonhomogeneous recurrence relations
Week 3	, Non-homogeneous recurrence relations, Generating functions, Recurrences and generating functions
Week 4-5	Exponential generating functions. Statements Symbolic Representation and Tautologies,
	September 2025
Week 1	Quantifiers, Predicates and validity, Prepositional Logic. Lattices as partially ordered sets, their properties
Week 2	Lattices as Algebraic systems. Sub lattices, Direct products and Homomorphism
Week 3	Some special lattices e.g. complete, Complemented and Distributive Lattices. Boolean Algebras as Lattices
Week 4	Various Boolean Identities, The switching Algebra. Example, Subalgebras, Direct Products and Homomorphism
	October 2025
Week 1	Joint-irreducible elements, Atoms and Minterms, Boolean forms and their equivalence
Week 2	Minterm Boolean forms, Sum of Products, Cononical forms, Minimization of Boolean functions, Applications ofBoolean Algebra to Switching Theory (using AND, OR and NOT gates.) The Karnaugh method.
Week 3	Finite state Machines and their Transition table diagrams, Equivalence of Finite State, Machines, Reduced Machines
Week 3	, Homomorphism. Finite automata, Acceptors, Nondeterministic,
Week 4	Diwali Break

	November 2025
Week 1	Finite Automata and equivalence of its power to that of deterministic Finite automata, Moore and Mealy Machines.
Week 2	Grammars and Language: Phrase-Structure Grammars, Requiting rules, Derivation, Sentential forms,
Week 3	Language generated by a Grammar, Regular ,Context -Free and context sensitive grammars and Languages, Regular sets, Regular Expressions and the pumping Lemma.
Week 4	Tests and Assignments

Academic Session 2025-26

Subject-Mathematics

Class-B.A/B.SC/B.SC Maths Hons-I sem

Paper:- Programming in c &numerical methods Name: Neeraj, Preeti

	Month
	JULY
Week 3 - 4	Programmer's model of a computer Algorithms, Flow charts,
	Data types, Operators and expressions
	<u>AUGUST</u>
Week 1	Input / outputs functions
Week 2	Decisions control structure: Decision statements, Logical and conditional statements
Week 3	Implementation of Loops,
Week 4	Switch Statement & Case control structures
Week 5	Functions, Preprocessors and Arrays.
	<u>SEPTEMBER</u>
Week 1	Strings: Character Data Type, Standard String handling Functions
	Arithmetic Operations on Characters. Structures:
Week 2	Definition, using Structures ,Use of Structures in Arrays and Arrays in Structures.
Week 3	Pointers: Pointers Data type, Pointers and Arrays, Pointers and Functions.
Week 4	Solution of Algebraic and Transcendental equations: Bisection method, Regula-Falsi method
	<u>OCTOBER</u>
week 1	Secant method, Newton-Raphson's method.
	Newton's iterative method for finding pth root of a number, Order of convergence of above methods.
Week 2	Simultaneous linear algebraic equations: Gauss-elimination method,
Week 3	Diwali Break
Week 4	Gauss-Jordan method, Triangularization method (LU decomposition method).
Week 5	Crout's method, Cholesky Decomposition method. Iterative method
	NOVEMBER
week 1	Jacobi's method, Gauss-Seidal's method, Relaxation method
Week 2	Test and Assignment

Name of Teacher: Dr. Rekha Dahiya

Class and Section: B. Sc III Subject: MATHEMATICS

Paper: Groups and Rings

July

Week 4: Definition of group and its brief introduction, examples of group and general properties.

AUGUST

- Week 1: Theorems on group, introduction of subgroups and its examples, subgroup criterion, product, intersection and union of subgroup.
- Week 2: Cyclic groups and its examples and theorems, Euler function and its generators of groups.
- Week 3: Introduction of cosets of a subgroup, theorems on cosets, Index of a subgroup, Lagrange's theorem and its consequences, introduction to Normal subgroups and simple groups
- Week 4: Examples and theorems on Normal subgroups, concept of quotient groups, examples and theorems on quotient groups.
- **Week 5:** Introduction to Homomorphism and isomorphism of groups and examples, Kernel of homomorphism and Fundamental theorem, Automorphism.

SEPTEMBER

- **Week 1:** Examples and theorems on automorphism and Inner automorphism, Normalizer of a subgroup and examples, centre of a group.
- Week 2: Definition of permutation group and alternating group, related theorems, Caley theorem
- **Week 3:** Introduction to Rings and related examples and theorems, integral domain and its examples, introduction to Field and examples.
- Week 4: Theorems on fields and integral domain, subring of a ring and examples, characteristic of ring and field and related theorems.

OCTOBER

- **Week1:** Introduction to ideal, their examples, sum, product, intersection, union and related theorems.
- Week 2: Principal ideal and principal ideal domain, their examples and theorems.
- Week 4/5: Maximal and prime ideal, idempotent and nilpotent element in ring, concept of quotient ring, ring homomorphism and its examples, Fundamental theorem on homomorphism.

NOVEMBER

- Week 1: Field of quotient of an integral domain, divisibility in the ring. Unit, prime and irreducible element in ring and their examples.
- Week 2: Introduction to polynomial ring, polynomial over ring and integral domain, GCD and LCM in ring, Euclidean ring, its example and theorems, theorems on prime and irreducible element
- Week 3: Unique factorization domain and its examples and theorems.
- : Division algorithm, irreducibility of polynomial over ring and integral domain, mod-p and the Eisenstein's criterion for irreducibility of polynomials.

Academic Session 2025-26

Class: M.Sc. Maths (1st sem)

Paper: Graph Theory Name: Dr. Sushma

Weeks	Month
	August 2025
Week 1	Definition and types of graph,
Week 2	Walk,path and circuit ,connected and disconnected graph
Week 3	Applications on graph operation on graph
Week 4-5	Graph representation isomorphism of graphs
	September 2025
Week 1	Eularian and hamiltonian path, Shortest path in weighted graph.
Week 2	The travelling salesman problem ,planar graph
Week 3	Detection of planarity and Kuratowski theorem
Week 4	Graph colouring, revision and test
	October 2025
Week 1	Directed graph tree and tree terminology,
Week 2	Rooted label trees
Week 3	Prefix code, binary search tree
Week 3	,Tree traversa,revision test
Week 4	Diwali Break
	November 2025
Week 1	Spanning trees and cut sets, Minimum spanning trees
Week 2	Karuskal algorithms, prime algorithm
Week 3	Decision trees, sorting method.

LESSON PLAN

Session: 2025-26 (ODD SEM) Name of Teacher- Dr. Savita Deswal

WEEKS	SYLLABUS	
	July	
Week 1	Chapter: Continuous functions, uniform continuity	
	August	
Week 1	Assignments : Examples based on continuity	
	Chapter: Discuss the problem	
Week 2	chapter: The derivative and mean value theorems	
Week 3	Chapter: The derivative and mean value theorems, Lagrange's mean value theorem,	
	Darboux's theorem, Rolle's theorem, Taylor's theorem	
	Assignments: Examples related to mean value theorems	
Week 4	Chapter: Maclaurin's theorem, Cauchy's mean value theorem	
	September	
Week 1	Chapter: Indeterminate forms	
Week 2	Chapter: Limit and continuity of functions of two variables	
	Assignments: Examples	
Week 3	Chapter: and continuity of functions of two variables and Partial differentiation	
	Assignments: Examples	
Week 4	Chapter: Partial differentiation-Homogeneous functions, Euler's theorem	
	Assignments: Questions based on Euler's theorem	
	October	
Week 1	Chapter: Differentiability of functions of two variables	
W 1.0	Assignments: Definitions related to differentiability	
Week 2	Chapter: Differentiability of a function of two variables- Implicit function theorem	
Week 3	Assignments: Questions based on excercise Chapter: Maximum and minimum of a function of two variables, Lagrange's method of	
WEEK 3	undetermined multipliers	
	Assignments: Examples	
Week 4	Chapter: Curves in space ,introduction to curves, Circle of curvature and spherical	
WCCK 4	curvature, normal plane	
	Assignments: Examples	
	November	
Week 1	Chapter: Circle of curvature and spherical curvature	
· - -	Assignments: Examples	
Week 2	Chapter: Concept of a surface and envelopes	
	Chapter: Involutes and evolutes	

Revision

LESSON PLAN

Session: 2025-26 (ODD SEM) Name of Teacher- Dr. Savita Deswal Class- B.Sc. Single Major 1st Semester Subject- Vector Calculus

WEEKS	SYLLABUS		
	July		
Week 1	Introduction scalar point function and vector point function		
Week 2	Scalar and Vector Multiple products of vectors,, differentiation of vectors, Product of four vectors		
	August		
Week 1	Reciprocal vectors: scalars and vector point function, derivatives along curve Directional derivatives Class test		
Week 2	Gradient of scalar point function, Tangent planes and Normal lines. Examples Problem discussion		
Week 3	Divergence of vector point function		
Week 4	Curl of vector point function sums and product and their related vector identify Problem discussion test		
	September		
Week 1	Double integral, double integral in polar coordinates, change of order, change in variable		
Week 2	Triple integral in cylindrical coordinates and spherical coordinates, change of order in triple integral, volume integral		
Week 3	Laplacian operatorVector integration Numericals, Problems		
Week 4	Vector integration, Problems of line integral Presentations Unit -4 Surface integral and volume integral		
	October		
Week 1	Gauss and Green theorem		
Week 2	1 Stoke throrem		
Week 3	Orthogonal curvilinear coordinates Condition for orthogonality, fundamental triad of mutually orthogonal unit vectors test		
Week 4	Gradient, divergence ,curl and Revision		

	November	
Week 1	Laplacian operator in term of curvilinear coordinates spherical and cylindrical coordinates	
Week 2	Problem discussion Revision	
vWEEKS	SYLLABUS	
	July	
Week 1	Introduction scalar point function and vector point function	
Week 2	Scalar and Vector Multiple products of vectors,, differentiation of vectors, Product of four vectors	
	August	
Week 1	Reciprocal vectors: scalars and vector point function, derivatives along curve Directional derivatives Class test	
Week 2	Gradient of scalar point function, Tangent planes and Normal lines. Examples Problem discussion	
Week 3	Divergence of vector point function	
Week 4	Curl of vector point function sums and product and their related vector identify Problem discussion test	
	September	
Week 1	Double integral, double integral in polar coordinates, change of order, change in variable	
Week 2	Triple integral in cylindrical coordinates and spherical coordinates, change of order in triple integral, volume integral	
Week 3	Laplacian operatorVector integration Numericals, Problems	
Week 4	Vector integration, Problems of line integral Presentations Unit -4 Surface integral and volume integral	
	October	
Week 1	Gauss and Green theorem	
Week 2	1 Stoke throrem	

Week 3	Orthogonal curvilinear coordinates	
	Condition for orthogonality, fundamental triad of mutually orthogonal unit vectors	
	test	
Week 4	Gradient, divergence ,curl and Revision	
	November	
Week 1	Laplacian operator in term of curvilinear coordinates spherical and cylindrical coordinates	
Week 2	Problem discussion	
	Revision	

Name of the Assistant/Associate Professor: Dr. Preeti

Class and Section: M.Sc. 2nd Year (Maths) (3rd Sem)

Subject: MATHEMATICS (code: 25MAT203DS04)

Paper: Ordinary Differential Equations

JULY

Week 5- Preliminaries.

AUGUST

WEEK 1- ε-approximate solution, Cauchy-Euler construction of an ε-approximate solution of an initial value problem, Equicontinuous family of functions, Ascoli-Arzela Lemma.

- Week 2- Cauchy Peano existence theorem. Lipschitz condition, Picard Lindelof existence and uniqueness theorem for dy/dt = f(t,y), Solution of initial-value problems by Picard method, Dependence of solutions on initial conditions.
- Week 3- Linear systems, Matrix method for homogeneous first order system of linear differential equations, Fundamental set of solutions, Fundamental matrix of solutions.
- Week 4- Wronskian of solutions, Basic theory of the homogeneous linear system, Abel-Liouville formula, Non-homogeneous linear system, Unit test.
- Week 5- Strum Theory, Self-adjoint equations of the second order, Abel formula, Strum Separation theorem, Strum Fundamental comparison theorem.

SEPTEMBER

- Week 1- Nonlinear differential systems, Phase plane, Path, Critical points, Autonomous systems.
- Week 2- Isolated critical points, Path approaching a critical point, Path entering a critical point.

- Week 3- Types of critical points- Center, Saddle points, Spiral points, Node points, Stability of critical points, Asymptotically stable points.
- Week 4- Unstable points, Critical points and paths of linear systems. Almost linear systems.

OCTOBER

- Week 1- Nonlinear conservative dynamical system, Dependence on a parameter, Unit Test.
- Week 2- Liapunov direct method, Limit cycles, Periodic solutions, Bendixson nonexistence criterion.

WEEK 3- **DIWALI BREAK**

- Week 4- PoincoreBendixson theorem (statement only), Index of a critical point. Strum-Liouville problems, Discussion.
- Week 5- Orthogonality of characteristic functions.

NOVEMBER

- Week 1 -Discuss problems And Take Test
- Week 2- Numerical Problems and Presentations
- Week 3 Revision And Take Test
- Week 4- Revision And Take Test

Lesson plan session 2025 -26

Teachers name Dr. Rekha Dahiya

Class. BSc 1 section. A (sem 1)

Paper Introductory mathematics

Subject. MDC mathematics

July	
Week 3	Numbers,HCF of numbers
Week 4/5	LCM of numbers
August	
Week 1	Decimal and fraction, simplification
Week 2	Square root and cube root
Week 3	Surds and indices
Week 4/5	Decimal and fraction
September	
Week 1	problem on number averages and percentage
Week 2	Profit and loss
Week 3	ratio and proportion
Week 4/5	problem on ages
October	
Week 1	Partnership
Week 2	Diwali break
Week 3	time and work
Week 4/5	Time and distance
November	
Week 1	Problem on trains, mixture problem
Week 2	problem based on calendar and clock
Week 3	Revision

LESSON PLAN (2025-26) B.com. 2 (minor), Semester-III

Paper name. operation Research Teacher's name: Dr. Rekha Dahiya

Revision

week 3.

Name of the Assistant/Associate Professor: Dr Kusum, Dr Neeraj, Dr Shalini

Class and Section: B.Sc. III, B.A.III, B.Sc. III Hons

Subject: MATHEMATICS

Paper: Numerical analysis

July

Week 4:

Finite difference operator, Forward and backward difference operator, Central diff. operator, fundamental theorem of diff. operator, operator E and their properties.

August

Week 1:

Effect of error in tabular value, relation b/w different operator, definition of terms interpolation and extrapolation, definition of term interpolation with equal intervals

Week 2:

Finite difference operator, Forward and backward difference operator, Central diff. operator, fundamental theorem of diff. operator, operator E and their properties

Week 3: Effect of error in tabular value, relation b/w different operator, definition of terms interpolation and extrapolation, definition of term interpolation with equal intervals

Week 4

Interpolation with unequal intervals, difference b/w interpolation with equal intervals, Newton formula for forward and backward interpolation, problems, subdivision of interval

September

Week 1: interpolation with equal intervals and examples.

Divided difference formula and theorems, newton divided difference and ordinary difference and examples.

Week 2: lagrange interpolation formula and examples. Hermite formula and examples.

Week 3: Gauss forward and backward interpolation and related examples

Week 4: Bessel formula, Sterling formula and examples and problems. Test

October

Week 1: Probability distribution of random variables, binomial distribution and examples., Poisson distribution and examples.

Week 2: Normal distribution and examples, problems, Numerical differentiation derivative of interpolation formula, Eigen value formula

Week 3: Diwali Break

Week 4: Power method examples and problems,

Jacobi method and examples., Given method and examples and problems, House holder method and examples., QR method, lanczo method, examples

November

Week 1: Newton quotes quadrature formula, Trapezoidal rule, Simpsons one third rule and examples.

Week 2: Simpsons three eight rule ,Chebychev formula and Gauss quadrature formula ,examples

Week 3: Single step method, Picard method, Tailor series and Euler method, Runga kutta method and multiple step method and examples.

Week 4: Revision, Tests and Assignments

LESSON PLAN

Session: 2025-26 (ODD SEM)

Name of Teacher- Dr. Parvesh Kumari, Dr. Ridam Class- B.Sc. Non-medical & Hons. -5th Semester

Subject- Groups & Rings

WEEKS	SYLLABUS
	July
Week 3	Definition of a group with examples and simple properties of Group, Subgroups and Subgroup criteria.
Week 4	Generation of groups, cyclic groups, cosets, Left and Right cosets, Index of a subgroup.
	August
Week 1	Coset decomposition, Lagranges theorem and its consequences
Week 2	Normal subgroups, Quotient groups
Week 3	Homomorphism, Isomorphism
Week 4	Automorphism and Inner automorphism of a group
	September
Week 1	Automorphism Cont.
Week 2	Permutation Groups
Week 3	Introduction to Rings, Subrings, Integral Domains and Fields
Week 4	Characteristic of a ring, Ring Homo.
	October
Week 1	Ideals and Quotient Rings
Week 2	Euclidean Rings
Week 3	Break
Week 4	Euclidean Rings Cont.
	November
Week 1	Polynomial Rings
Week 2	Polynomial Rings Cont. and Revision

Academic Session: 2025-26

Class: M.Sc. Maths (1st Sem)

Paper: Analytical Number Theory Name: Dr. Preety

Weeks Month					
	August 2025				
Week 1	Distributions of primes, Fermat numbers				
Week 2	Mersene numbers, Farey series and some results				
Week 3	Approximation of irrational nos by rationals				
Week 4	Hurwitz theorem, Irrationality of e and pie.				
Week 5	Test of 1 st section				
	September 2025				
Week 1	The Airthmetic in Zn, The group Un, Primitive roots				
Week 2	The group of quadratic residues Qn, Quadratic residues for prime power moduli				
Week 3	Algebraic structure of Un and Qn				
Week 4	Test of IInd section				
	October 2025				
Week 1	Riemann Zeta function and its convergence, Applications of Prime numbers				
Week 2	Diophantine equations, Representation of numbers by two or four squares				
Week 3	Diwali Break				
Week 4	Warning problem, Four square theorem, The numbers g(k) and G(k) and lower				
	bounds for g(k) and G(k)				
	November 2025				
Week 1	Airthmetic functions, Definitions and examples and simple properties				
Week 2	Perfect numbers, Mobius inversion formula				
Week 3	Mobius function, The order and average order of the function n				
Week 4	Seminar on important topics, Tests and Assignments				

Academic Session: 2025-26

Class: M.Sc. Maths (1st Sem)

Paper: Complex Analysis Name: Dr. Parul Singh

Weeks Month				
	August 2025			
Week 1	Function of Complex Variable, Continuity and Differentaibity, Ananlytic			
	functions and its property			
Week 2	Cauchy Riemann Equation, Power series and Radius of Convergence			
Week 3	Examples on Radius of Convergence, differentiability od sum function of power			
	series			
Week 4	Branches of many valued functions with reference to arg z, log z, complex			
	exponential function			
Week 5	Test of 1st section, Path in region, Contour, complex integration			
	September 2025			
Week 1	Cauchy theorem, Cauchy Integral formula + Group wise Seminar on above			
	topics.			
Week 2	Higher order derivatives, Complex intergral as a function of upper limit			
Week 3	Morera theorem, Cauchy inequality, Liouville Theorem, Taylor Theorem			
Week 4	Zeros of analytic function, Laurent series, Isolated Singularities			
	October 2025			
Week 1	Cassorati- Weisrstrass theorem, Limit point of zeroes and pole			
Week 2	Maximum modulus principle, Schwarz Lemma, Meromorphic functions,			
	Argument Principle			
Week 3	Diwali Break			
Week 4	Rouche Theorem, fundamental theorem of algebra, inverse function theorem,			
	Revision and test			
	November 2025			
Week 1	Calculus of residues, Cauchy residue theorem Conformal mappings			
Week 2	Equation of integrals, Space of analytic functions and completeness, Hurwitz			
	theorem			
Week 3	Montel Theorem, Riemann mapping theorem, discuss some short question on			
	entire syllabus			
Week 4	Seminar on important topics, Tests and Assignments			

Academic Session: 2025-26

Class: B.com 1st Sem

Paper: Basic Mathematics Name: Dr. Parul Singh

Weeks	Month				
	July 2025				
Week 3	Differentiation				
Week 4	Differentiation of Logarithmic and Exponential functions				
	August 2025				
Week 1	Partial differentiation				
Week 2	Total Differentials, Maxima and Minima				
Week 3	Maxima and Minima continue				
Week 4	Test of 1 st and 2 nd chapter and revision of 1 st section				
Week 5	Indefinite Integration				
	September 2025				
Week 1	Indefinite Integration continue, Definite integration				
Week 2	Test				
Week 3	Definite integration				
Week 4	Application on Integration				
	October 2025				
Week 1	Algebra on Matrices				
Week 2	Algebra on Matrices continue	Algebra on Matrices continue			
Week 3	Diwali Break				
Week 4	Revision on Matrices and Test				
	November 2025				
Week 1	Determinant, System of linear equations				
Week 2	Revision, Tests and Assignments				

Academic Session: 2025-26

Classes: B. Sc 1st Sem, B. Sc 1st Sem (Hon.), B. A 1st Sem

Paper: Functions of Algebra Name: Dr. Parul Singh, Dr. Yashpal

Weeks	Weeks Month				
	July 2025				
Week 3	Chapter 1:Relations and Functions				
Week 4	Invertibility and inverse of a function				
	August 2025				
Week 1	Chapter 2: Relation between the roots and coefficients of an equation				
Week 2	To find condition that roots of given equation satisfies a given relation				
Week 3	Chapter 3:Transformation of equations				
Week 4	Chapter 3 continued with test of first chapter, rivision and doubts class along with				
	test				
Week 5	Chapter 4:Descarte's rule of signs				
	September 2025				
Week 1	Chapter 5: Solution of cubic and biquadratic equations				
Week 2	Doubts and Problems of chapter 4 and 5 with their tests				
Week 3	Chapter 6: Matrices				
Week 4	Matrices continued with problems				
	October 2025				
Week 1	Chapter 7: Rank of a matrix				
Week 2	Linear dependence and independence of row and column matrices				
Week 3	Diwali Break				
Week 4	Chapter 8: Applications of Matrices to a system of linear equation				
	November 2025				
Week 1	Chapter 9: Eigens values, eigen vectors and chacteristics equation of a matrix				
Week 2	Rivision of syllabus with assignments and Test.				

Academic Session: 2025-26

Class: M.Sc. Maths (3rd Sem)

Paper: Functional Analysis Name: Dr. Kusum

Weeks	Month				
	July, 2025				
Week 5	Normed linear spaces, Metric on normed linear spaces, Completion of a normed				
	spaces				
	August, 2025				
Week 1	Banach Spaces, Subspace of a Banach space, Holder and Minkowski inequality				
Week 2	Completeness of quotient spaces of normed linear spaces, Completeness of				
	different spaces.				
Week 3	Incomplete normed spaces. Problem discussion and test.				
Week 4	Finite dimensional normed linear spaces and subspaces.				
	September 2025				
Week 1	Bounded linear transformation, Equivalent formation of continuity				
Week 2	Spaces of bounded linear transformations				
Week 3	Continuous linear functional, Conjugate spaces				
Week 4	Hahn Banach extension theorem, Problem discussion, Seminar and test.				
	October 2025				
Week 1	Riesz representation theorem for bounded linear functionals on L ^p and C[a,b]				
Week 2	Second conjugate spaces, Reflexive space, Uniform bounded principle and its				
	consequences.				
Week 3	Diwali Break				
Week 4	Open mapping theorem and its application, projection, closed graph theorem				
	November 2025				
Week 1	Equivalent norms, Weak and strong convergence, Equivalence in finite				
	dimensional spaces				
Week 2	Weak sequential compactness, Solvability of linear equations in Banach spaces.				
Week 3	Compact operator and its relation with continuous operator, Compactness of L.T.,				
	and Compact operators and its properties.				
Week 4	Seminar on important topics, Tests and Assignments				

Academic Session: 2025-26

Class: B.Sc. 3rd Sem(SEC)

Paper: Operations Research Techniques Name: Dr. Kusum

Weeks	Month				
	July 2025				
Week 5	Definition, Scope, methodology and application of OR. Types of OR mode				
	August 2025				
Week 1	Concept of optimization, Formation of LPP,				
Week 2	Requirements for an LPP, Advantage and limitation of LP, Graphical solution				
Week 3	Graphical solution of LPP				
Week 4	Problem discussion and Test				
	September 2025				
Week 1	Principle of simplex methods, Basic solution				
Week 2	Cases of simplex method				
Week 3	Two phase and Big M method				
Week 4	Problem discussion, seminar and test				
	October 2025				
Week 1	Duality in LPP				
Week 2	Transportation problem and its different cases				
Week 3	Diwali Break				
Week 4	Assignment problem and its cases				
	November 2025				
Week 1	Unbalanced Assignment problem, crew assignment and travelling salesman				
	problem				
Week 2	Game theory and its cases, Problem discussion and Test				

Academic Session: 2025-26

Class: M.Sc. Maths (3rd Sem)

Paper: Functional Analysis Name: Dr. Kusum

Weeks	Month				
	July, 2025				
Week 5	Normed linear spaces, Metric on normed linear spaces, Completion of a normed				
	spaces				
	August, 2025				
Week 1	Banach Spaces, Subspace of a Banach space, Holder and Minkowski inequality				
Week 2	Completeness of quotient spaces of normed linear spaces, Completeness of				
	different spaces.				
Week 3	Incomplete normed spaces. Problem discussion and test.				
Week 4	Finite dimensional normed linear spaces and subspaces.				
	September 2025				
Week 1	Bounded linear transformation, Equivalent formation of continuity				
Week 2	Spaces of bounded linear transformations				
Week 3	Continuous linear functional, Conjugate spaces				
Week 4	Hahn Banach extension theorem, Problem discussion, Seminar and test.				
	October 2025				
Week 1	Riesz representation theorem for bounded linear functionals on L ^p and C[a,b]				
Week 2	Second conjugate spaces, Reflexive space, Uniform bounded principle and its				
	consequences.				
Week 3	Diwali Break				
Week 4	Open mapping theorem and its application, projection, closed graph theorem				
	November 2025				
Week 1	Equivalent norms, Weak and strong convergence, Equivalence in finite				
	dimensional spaces				
Week 2	Weak sequential compactness, Solvability of linear equations in Banach spaces.				
Week 3	Compact operator and its relation with continuous operator, Compactness of L.T.,				
	and Compact operators and its properties.				
Week 4	Seminar on important topics, Tests and Assignments				

Academic Session: 2025-26

Class: B.Sc. 3rd Sem(SEC)

Paper: Operations Research Techniques

Weeks	Month				
	July 2025				
Week 5	Definition, Scope, methodology and application of OR. Types of OR models				
	August 2025				
Week 1	Concept of optimization, Formation of LPP,				
Week 2	Requirements for an LPP, Advantage and limitation of LP, Graphical solution				
Week 3	Graphical solution of LPP				
Week 4	Problem discussion and Test				
	September 2025				
Week 1	Principle of simplex methods, Basic solution				
Week 2	Cases of simplex method				
Week 3	Two phase and Big M method				
Week 4	Problem discussion, seminar and test				
	October 2025				
Week 1	Duality in LPP				
Week 2	Transportation problem and its different cases				
Week 3	Diwali Break				
Week 4	Assignment problem and its cases				
	November 2025				
Week 1	Unbalanced Assignment problem, crew assignment and travelling salesman problem				
Week 2	Game theory and its cases, Problem discussion and Test				

Name: Dr. Kusum

Academic Session: 2025-26

Class: M.Sc. Maths (1st Sem)

Paper: Mathematical Statitics Name: Dr. Neeraj

Weeks	Month						
	August 2025						
Week 1	Probability, approaches of probability						
Week 2	Addition theorem, Boole inequality						
Week 3	Conditional probability, multiplication theorem						
Week 4	Independent events						
Week 5	Bates theorem , Assignments						
	September 2025						
Week 1	Random variable and probability function						
Week 2	Discrete and continuous random variables						
Week 3	concept of bivariate random variables, joint and marginal function						
Week 4	Mathematical expectations, M.G.F, presentation						
	October 2025						
Week 1	Discrete distribution (Uniform,bernoulli)						
Week 2	Discrete distribution (Poisson, Geometic), Unit test 1						
Week 3	Diwali Break						
Week 4	Continuous distribution (uniform, exponential)						
	November 2025						
Week 1	continuous distribution (uniform, exponential,normal)						
Week 2	Hypothesis testing, level of significance, Unit test 2						
Week 3	Test of significance, large sample test and difference between two means and proportion						
Week 4	Seminar on important topics, Tests and Assignments						

Name of Assistant Professor: - Dr. Mamta

Class and Section: M.Sc. Math Semester -3rd

Subject: - Fluid Dynamics

Lesson Plan: (From 28th July 2025 to 30th November 2025)

Week	July					
5	Introduction of Fluid Dynamics					
	August					
1	Eulerian Method & Its Examples, Lagrangian method and its example					
2	Streamline, Path lines and it's examples, Streamline and its example and problems discussion					
3	Vortex line and its related theorem and example, Test 1st Unit, Velocity Potential and its related theorem and example					
4	Rotational and irrational motion and Its Examples, Equation of Continuity and all its form & Its Examples , Boundary Surface					
5	Assignment, Acyclic and Cyclic Irrotational Motion , Kinetic Energy of Irrotational Flow					
	September					
1	Kelvin's Minimum Energy Theorem & Its Examples, Axially Symmetric Flows, Liquid Streaming Past a Fixed Sphere					
2	Motion of Sphere through a liquid at rest at infinity, Problem of Above Topic, Equation of Motion of a Sphere					
3	Three Dimensional Spaces ,Test - Unit 2, Source, Sink and Doublet and Their Images, Stoke's Stream Function and Its Example					
4	Acceleration at a point of fluid Components of acceleration in cylindrical,					
	Spherical Polar Coord Mare, The slem of above Topic					
1	Assignments, Blasius Theorem, Two Dimensional Irrational motions produced					
	by motions of circular					
<u>2</u> 1	Co-axial cylinder in an infinite mass of liquid, problem of above Topic, Test-Unit Assignments, Pressure at a point of moving fluid and its examples ,Euler's and					
3	Lagrange's of motion, Bernoulli's equation and its example, Impulsive motion, Stream Function, Test -Unit 3					
2	Irrational motion in Two dimensions of Complex Velocity Potential, Milne-					
4	Two Dimensions Source, Sink ,Doublets and their image, problem of above Topic					